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I. INTRODUCTION

Despite the incredible success of Transformers [5], there is much
that remains to be understood about the attention mechanism and
its learning via gradient-based algorithms. The theoretical studies of
gradient-based optimization in Transformers are rather limited and
paint a far-from-complete picture [1], [3], [4].

In this work, we present convergence proofs for gradient flow and
gradient descent on the parameters of a one-layer Transformer in
the “beyond-NTK” regime [2], on a simple data distribution where
the Transformer’s attention plays a key role in solving the task.
Specifically, we introduce and formalize a simple decision-list-like
data distribution, serving as a theoretically simple, near-minimal
example of a data distribution for which learning the attention head is
crucial in solving the task. We study our simple Transformer’s ability
to learn this data distribution both empirically and theoretically,
and we prove efficient gradient-descent-based learning under the
population loss.

We first focus on just training the parameters of the Transformer
inside the softmax-based-attention and prove that gradient descent on
the population loss can efficiently learn these parameters. We then
present a generalization of our data distribution and prove a corre-
sponding local convergence result, in which the Transformer’s value
matrix is trained too, beginning from a “good enough” initialization.
In this extended abstract, we briefly introduce our simple Transformer
model, our data distribution, and our key results.

A. Simplified Transformer model

Let L denote the vocabulary size, n denote the sequence length,
and d denote the embedding dimension. For a sequence of tokens of
length n, let X ∈ Rd×n be the matrix formed by concatenating the
embeddings of the n tokens. A Transformer model is composed of
attention layers which have d× d parameter matrices WQ, WK , and
WV and computes new sequence embeddings via the function:

X 7→ σ((WVX)σ((WKX)>(WQX))),

where for any matrix M , σ(M) is the softmax function applied to
the columns of M .

In the following, we consider a simplified Transformer model
where the product W>KWQ is replaced by a single d× d parameter
matrix W , and for simplicity we use V to denote the matrix WV :

fW,V (X) := σ(V Xσ(X>WX)), (1)

Further, we assume that the embedding dimension d equals the
vocabulary size L, and the input embeddings are simple one-hot
embeddings, i.e. token i is embedded as the standard basis vector ei,
which is 0 in all coordinates except i, where it is 1. Thus, a sequence
(i1, i2, . . . , in) ∈ [L]n is represented by X = [ei1 | ei2 | . . . |ein ].

We assume also that the output vocabulary size is L. For a given
input sequence represented by X , let Y = (y1, y2, . . . , yn) ∈ [L]n

be the label sequence. The loss of the Transformer model fW,V on

a single sequence (X,Y ) is now defined as

L((W,V ); (X,Y )) =
1

n

n∑
j=1

− log(fW,V (X)yj ,j). (2)

We analyze the dynamics of gradient flow and gradient descent on the
above loss function on the sequence-to-sequence mapping described
in the next section. We let Lt denote the population loss at time t,
i.e. Lt := L(Wt, Vt), where (Wt, Vt) are the parameters at time t.

B. Sequence-to-sequence mapping

We consider an arbitrary permutation function π : [L] → [L],
and we let P denote the L × L permutation matrix associated with
the permutation function π. The sequence-to-sequence mapping of
interest is computed as follows. Let M denote a positive integer
assumed to be much less than L. For every token a ∈ [L], we
associate a list of tokens La = (a1, a2, . . . , am) of length m ≤M ,
such that am = a. Given a sequence s ∈ [L]n, the output label y for
any token a ∈ s is equal to π(aj), where j is the smallest index in
La such that aj ∈ s. We call aj the label-determining token for a in
s, since it determines the label: π(aj). Note that since am = a ∈ s,
j always exists. Such a mapping can be realized by a decision list
associated with each token a.

C. Convergence analysis

Our main results are as follows1:
1) Training only W : Consider c = 4n log(L)

δ
. Then gradient flow

on the population loss started from W0 = 0 and V = cP finds a
matrix W achieving perfect classification within time 4M

log(L)γ
.

2) Training W and V : Consider c = 10n2L0
δ

+ 4εn and some
ε > 0 such that ‖V0−cP‖∞ ≤ ε/2. Suppose L and n are sufficiently
large such that L0 − 6ε

n
> A for some A > 0 satisfying A2 >

4mL0
ε

. Then, starting from W0 = 0 and V0, with λmax denoting the
maximum eigenvalue of the Hessian of L(W,V ), running gradient
descent on the population loss with learning rate η ≤ 1

λmax
for

T ∈
[
2mL0
A2η

, ε
2η

]
steps encounters a t ∈ {1, . . . , T} such that Wt, Vt

achieve perfect classification on all sequences.

II. CONCLUSION

We have presented convergence results for a one-layer Transformer
on a simple decision-list-inspired data distribution, which crucially
requires the Transformer’s token-to-token attention in order to solve
the task. Although our local convergence requires the value matrix to
be initialized within a “good enough” region in parameter space, we
supplement our theorems with empirical results indicating that uni-
form attention (corresponding to W = 0) is sufficient to push V in the
direction of P . Therefore, there is perhaps a tantalizing opportunity
in future work to extend these results into a full convergence result
beginning from small, random initialization (which is notoriously
difficult to prove in such a non-overparameterized setting).

1The parameters δ, γ > 0 depend on the minimum probability mass that
the data distribution assigns to certain quantities.
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