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Abstract

Many existing deep learning generalization bounds do not seem to be informative1

and can even increase with the sample size, which has further motivated the study2

of algorithmic stability as a possible approach for overcoming these limitations. In3

this work, we present empirical evidence that uniform stability might not appear in4

practical deep learning settings with sufficient strength to explain generalization5

and, further, that a key requirement of existing arguments is not satisfied: for6

two datasets differing by a single point, the distance between the final learned7

parameters does not decrease with dataset size. However, deeper investigation8

reveals that these failures might not be as bleak as they appear: despite separation9

by a large distance, these parameters can still sometimes end up in the same basin10

of attraction. We use our insights to suggest promising directions for algorithmic11

stability as a tool for explaining generalization in deep learning.12

1 Introduction13

Despite the impressive empirical success of deep learning models, their ability to generalize well14

(on a significant set of data distributions) despite overparameterization has thus far largely eluded15

the research community [25, 23]. Various flavors of generalization bounds have been applied to16

neural networks, including various norm- and margin-based bounds [2, 22, 7, 17, 19], PAC-Bayes17

bounds [6, 24], and VC-dimension-based bounds [3]. However, many such bounds have been18

shown to be insufficiently-correlated with generalization as various model components are varied19

(e.g., number of parameters) [13]. Recently, Nagarajan and Kolter [20] demonstrated that some of20

these bounds can even increase with sample size in certain settings, underscoring the importance21

of empirically evaluating proposed bounds’ behavior as a function of dataset size. Furthermore,22

Nagarajan and Kolter [20] suggest that all uniform-convergence-based approaches might inherently23

be unable to explain deep learning’s generalization performance, even after uniform convergence24

is restricted to the smallest possible set of models determined by the implicit bias of the learning25

algorithm. If this is true, then what tools for proving deep learning generalization bounds remain?26

One such tool, as acknowledged by Nagarajan and Kolter [20], is algorithmic stability.27

Algorithmic stability. Algorithmic stability typically refers to a sensitivity analysis of the algorithm28

itself; specifically, how much can swapping (or removing) one point in an m-item training set29

S change the output of an algorithm A(S)? Bousquet and Elisseeff [4] formalized and proved30

generalization bounds under various different flavors of algorithmic stability; since then, additional31

variants of algorithmic stability have been developed [1, 9, 15, 18]. However, to this day, the main32

variant for obtaining bounds that hold with high probability over the random draw of the training set33

is uniform stability, the strictest of the requirements. Specifically, a learning algorithm A is called �-34

uniformly stable with respect to loss ` if:35

8S 2 Z
m, 8i 2 {1, . . . ,m}, 8z 2 Z : |`(A(S), z)� `(A(S\i), z)|  �,
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where S\i is S with element i removed. Often, uniform stability is expressed with respect to the36

swapping of one point, instead of the removal:37

8S, S0 2 Z
m, 8z 2 Z : |`(A(S), z)� `(A(S0), z)|  �,

where S and S0 only differ at one index.38

Algorithmic stability of stochastic gradient descent (SGD). Various works thus far have studied39

whether the framework of algorithmic stability can be applied to the analysis of stochastic gradient40

descent (typically including at least some extension to nonconvex loss landscapes) [11, 8, 16].41

However, each of these results has some subset of the following weaknesses when applied to practical42

deep learning:43

• The bound is only in expectation with respect to the draw of the sample S. In general, we44

ultimately seek bounds that will hold with high probability over the draw of the sample45

S ⇠ D
m, although such bounds are generally more difficult to prove theoretically.46

• The stability parameter � relies on smoothness parameters of the loss landscape that might47

not be particularly favorable for neural networks.48

• The result heavily relies on a learning rate of O(1/t), where t is the parameter update (vs.49

epoch). This ensures that, in expectation over the algorithm’s randomness, the learning50

rate has decayed more for larger samples by the time the swapped point is encountered.51

In contrast, in deep learning, the learning rate typically stays constant for at least the first52

epoch.53

• The proof relies on controlling the (expected) distance between A(S) and A(S0) in parame-54

ter space, which seems unlikely to decrease sufficiently with dataset size in practice (without55

the aforementioned 1/t learning rate schedule). We explore this in more detail in Section 4.56

Our work. Inspired by the growing literature empirically analyzing the shortcomings of current57

deep learning generalization bounds and the anticipated algorithmic stability weaknesses discussed58

above, in this work we initiate a study of the following question: Does SGD empirically satisfy59

uniform stability in practical deep learning settings, in a manner sufficient to yield generalization60

bounds that hold with high probability (over the draw of the dataset and the algorithm’s randomness)?61

Unfortunately, analyzing uniform stability empirically is incredibly challenging due to the many62

suprema in the definition (i.e., 8S, S0, z), and we thus do not claim that any empirical analysis63

can definitively answer whether or not SGD in deep learning is uniformly stable. However, to our64

knowledge, this is the most extensive empirical examination of uniform stability in deep learning to65

date. Our contributions are as follows:66

• Discussion of challenges in the empirical evaluation of uniform stability, with suggested67

methodology for overcoming them. Crucially, we validate our methodology in the simpler68

setting of logistic regression.69

• Evidence that uniform stability (with respect to the cross-entropy loss) does not decrease70

sufficiently with dataset size to fully explain deep learning’s generalization.71

• Evidence that kA(S) � A(S0)k2 (when the output of A is treated as a single vector of72

concatenated parameters) does not sufficiently decrease with dataset size in practical deep73

learning settings; in some cases, it can even increase despite strong generalization. We74

suggest that, if there is a form of algorithmic stability at play in deep learning, it does not75

stem from parameter closeness. We argue that future theoretical attempts to prove stability76

of SGD in deep learning should proceed through a different key path.77

• Discovery of settings with insufficient cross-entropy uniform stability to explain generaliza-78

tion but for which A(S) and A(S0) are in the same basin of attraction (see Section 4 for a79

precise definition), suggesting that convex settings with large basins of attraction could also80

share these same failure modes and thus pave the way for more tractable analyses.81

2 Methodology82

Here, we describe the key aspects of our methodology for empirically evaluating uniform stability,83

with additional details in Appendix A. We first applied our methodology to logistic regression, which84

we used to help validate our methodology. We then applied our methodology to deep neural networks.85
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Throughout the paper, we use A(S) to denote to the output of the algorithm on dataset S. Although86

this object is really a function, we slightly abuse notation and treat it as a vector, i.e., with all of the87

model’s parameters concatenated into a single vector. We occasionally use WS instead to denote the88

parameters output by A on S, concatenated into a single vector.89

Random seeds. Since we are seeking bounds that hold with high probability over the randomness90

of the algorithm, each plot we produce examines a single setting of the seed controlling initialization91

and the seed controlling SGD order. Thus, for each dataset/hyperparameter configuration, we present92

a single setting of the seeds in the main paper and defer our plots for other seeds to Appendix B.93

Datasets: S and S0. We used MNIST for logistic regression (divided into two classes for binary94

classification: labels 0-4 and labels 5-9), and we used CIFAR-10 [14] and SVHN (Street View95

House Numbers) [21] for neural network training (10-class classification). In order to thoroughly96

study behavior (e.g., test/train error, various stability metrics, etc.) as a function of dataset size, we97

examined the following dataset sizes: {800, 1600, 3200, 6400, 12800} for logistic regression and98

{15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000} for neural networks. See Appendix A99

for more details regarding this choice of dataset sizes.100

We emphasize that we intentionally do not use data augmentation; we want to precisely measure101

behavior as a function of dataset size, and to our knowledge, there is no widely-accepted approach102

for calculating the effective dataset size with data augmentation.103

Multiple trials per dataset size. To study the quantifier 8S, S0 2 Z
m

empirically as thoroughly104

as possible, we sampled multiple (S, S0) pairs per dataset size m. Each (S, S0) pair was sampled as105

follows: we first randomly drew a subset of size m from the relevant training dataset (uniformly at106

random without replacement) to form S, we then uniformly sampled a single element of the relevant107

test set (call this element z), and finally we uniformly sampled an index i 2 {1, . . . ,m} of S in108

which to swap in z, thus forming S0. We then trained two models in parallel, one on training dataset109

S and one on S0. This procedure was repeated 90 times per dataset size for logistic regression and 40110

times per dataset size for each neural network configuration (due to the higher cost of each run).111

Crucially, the only difference between training on S and S0 was the appearance of z in S0 in a single112

batch per epoch. All other data points were the same and were visited in the same order. Furthermore,113

we explicitly disabled all sources of GPU nondeterminism to ensure that we were fully isolating the114

effect of swapping in z.115

Models and training. The logistic regression model is a 784-dimensional linear classifier plus a116

bias term, and the neural networks are residual networks, specifically ResNet-20 [12].117

The logistic regression models were trained via stochastic gradient descent (SGD) with learning rate118

0.1, batch size 128, and no momentum.119

On SVHN, we trained a ResNet-20 via SGD with learning rate 0.01, batch size 32, and no momentum.120

On CIFAR-10, we explored two different hyperparameter configurations: one without momentum121

and one with momentum 0.9. The other hyperparameters were the same across both configurations: a122

decaying learning rate schedule (starting at 0.1 and dividing by 10 at iterations 32,000 and 48,000)123

and batch size 128 [12].124

Stopping criterion. We train each model for 100,000 iterations (i.e., parameter updates). See125

Appendix A for a more detailed discussion of stopping criteria.126

Uniform stability with respect to the cross-entropy loss. In the uniform stability definition,127

instead of a supremum over the domain, we calculate a max over the test set. A priori, it might not be128

clear how effective this would be, and we thus validate our methodology via logistic regression in129

Section 3 before proceeding to deep learning.130

Plots and curve fitting. Many of the quantities examined in this paper take the form of g(m) =131

supS2Zm f(S) or g(m) = supS,S02Zm f(S, S0) for some function f , and we expect g(m) to have132

the form g(m) = amb for some constants a, b. Thus, for these quantities, we use the following133

plotting motif: all trials per dataset size are displayed as blue dots, the maximum value per dataset134
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Figure 1: Generalization and stability curves. 90 samples per dataset size m. Each sample involves
independently drawing S ⇠ D

m
train, z ⇠ Dtest, i ⇠ U([m]). S0 := Si z .

size is a red dot, and a green curve of the form g(m) = amb is fit to the red dots (see Appendix A for135

curve fitting details). To emphasize b, the rate of decrease (or occasionally increase) with m, these136

plots display both the x- and y-axes in log scale.137

3 Uniform Stability and Generalization138

For many years, obtaining useful generalization bounds via uniform stability required � = O(1/m),139

but [8] (followed by [5]) recently derived tighter bounds of the form: with probability at least 1� �140

over the choice of S ⇠ D
m,141

RD(A(S))  bRS(A(S)) + c

 
� log(m) log(m/�) +

p
log(1/�)
p
m

!
(1)

for some constant c. Here, RD(A(S)) is the expected loss over the true distribution, and142

bRS(A(S)) is the empirical loss evaluated on S. This bound suggests that RD(A(S))� bRS(A(S))143

is bounded by Õ(max{�, 1/
p
m}), hiding logarithmic dependencies inside the Õ. Thus, if144

RD(A(S)) � bRS(A(S)) empirically decays more slowly than 1/
p
m, providing empirical evi-145

dence that RD(A(S)) � bRS(A(S)) and � decay similarly with m would suggest that uniform146

stability has sufficient strength to explain generalization.147

In this section, we present the results of our uniform stability experiments for both logistic regression148

and neural networks. In both sections, we also carefully estimate R(A(S))� bRS(A(S)) as a function149

of dataset size, under both the 0-1 loss and the logistic or cross-entropy loss, to understand to what150

degree our uniform stability results are able to capture the strength of generalization. For convenience,151

we use the phrase “generalization gap” or “loss gap” to denote this difference in test and train loss.152

3.1 Logistic regression153

As there are obvious challenges in the empirical investigation of uniform stability with respect to154

the cross-entropy loss, we began by analyzing logistic regression, which presents many of the same155

challenges (e.g., the logistic loss, how to analyze the suprema over the domain, etc.) but provides a156

much simpler and better-understood testbed in which to explore our methodology.157

Results. In Figure 1, we plot the logistic loss generalization gap, our empirical estimate of the158

logistic loss uniform stability, the Euclidean distance between the final parameters of A(S) and159

A(S0), and the 0-1 loss generalization gap. We fit a curve to the maximum value per dataset size,160

as described in detail in Section 2 and Appendix A, and we compare the dependence on m of our161

curves. Among the first three plots, we see a very similar dependence on m, ranging from m�1.05162

to m�1.13. The dependence on m in the 0-1 loss generalization gap plot is a bit weaker (m�0.82),163

but we include this primarily for completeness and as a frame of reference; we are more interested164

in whether logistic loss stability can explain the strength (with respect to m) of generalization with165

respect to the logistic loss.166

Conclusions. These plots demonstrate the potential of our methodology to capture, via uniform167

stability with a finite maximum over the test set, the dependence on m of the Euclidean distance168

between parameters and, most importantly, the logistic loss generalization gap. Thus, although there169
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ID Model Dataset Learning rate Batch size Momentum
1a ResNet-20 SVHN 0.01 (constant) 32 0.0

2a ResNet-20 CIFAR-10 0.1, 0.01 at 32k, 0.001 at 48k 128 0.0
2b ResNet-20 CIFAR-10 0.1, 0.01 at 32k, 0.001 at 48k 128 0.9

Table 1: Deep neural network settings studied.

Figure 2: Generalization and stability curves. 40 samples per dataset size m. Each sample involves
independently drawing S ⇠ D

m
train, z ⇠ Dtest, i ⇠ U([m]). S0 := Si z . Note: We use “logistic loss”

and “cross-entropy” loss interchangeably here; all models in this figure were trained and evaluated
with the cross-entropy loss.

are obvious differences between the suprema in the definition of uniform stability and our empirical170

evaluation with finite maxima, our results suggest that there is nevertheless some promise of obtaining171

informative empirical results.172

3.2 Deep learning173

After validating our methodology in the simpler setting of logistic regression, we now extend our174

methodology to the three deep learning configurations described in Section 2.175

Results. Figure 2 displays the generalization and stability results for our three neural network176

settings. In contrast with logistic regression, we postpone examining the parameters themselves177

until Section 4, in which we conduct an analysis more targeted to deep learning’s nonconvex loss178

landscape.179
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Figure 3: kA(S) � A(S0)k2, at t = 100, 000, with 40 samples per dataset size m. Each sample
involves independently drawing S ⇠ D

m
train, z ⇠ Dtest, i ⇠ U([m]). S0 := Si z .

Most significantly, we compare the cross-entropy loss generalization gap to the uniform stability180

curve. For the ResNet-20 on SVHN, the stability curve displays a mild decrease with m (specifically,181

m�0.09), compared to m�0.18 for the cross-entropy loss generalization gap. For the ResNet-20 on182

CIFAR-10 without momentum, the stability curve does not decrease with m, despite the cross-entropy183

loss generalization gap having a dependence of m�0.48. For the ResNet-20 on CIFAR-10 with184

momentum, the stability curve displays a mild decrease with m (specifically, m�0.17), compared to185

m�0.35 for the cross-entropy loss generalization gap.186

To provide a frame of reference, we also compare the cross-entropy loss generalization gap to the187

0-1 loss generalization gap and note that, at least for these particular configurations, attempting to188

explain the rate of decrease with m of the cross-entropy loss generalization gap does not leave us too189

far from the 0-1 generalization gap either.190

Appendix B includes the same experiments repeated with more seeds (for initialization and SGD data191

order) and includes plots at other stopping points (other than 100,000 iterations).192

Conclusions. Overall, in our deep learning experiments, uniform stability with respect to the cross-193

entropy loss does not appear with sufficient strength to explain observed generalization with respect194

to the cross-entropy loss.195

4 Behavior of Parameters196

In this section, we analyze the behavior of the underlying parameters to try to disentangle the effect197

of the cross-entropy loss and the supremum over the domain (estimated via the max over the test set)198

from the learned models themselves in parameter space.199

4.1 Euclidean Distance200

As mentioned in Section 1, we are further interested in studying the Euclidean distance between201

the final learned parameters to help understand whether the key proof strategy introduced by Hardt202

et al. [11] extends to practical deep learning settings. Since this paper, most proofs of the stability203

of SGD (even in nonconvex settings) proceed by bounding the Euclidean distance in parameter204

space between A(S) and A(S0) and then appealing to the Lipschitzness of the loss. However, if205

the Euclidean distance between A(S) and A(S0) does not decrease with dataset size in our trained206

models, this suggests that this proof strategy might not be sufficient for obtaining generalization207

bounds in practical deep learning settings that hold with high probability (over the random draw of208

the dataset and the random initialization and SGD data order of the algorithm).209

Results. Figure 3 presents kA(S)�A(S0)k2 for our three neural network configurations. We see210

that, from m = 15k to m = 50k, the distances do not decrease with dataset size at a sufficient rate to211

explain generalization and actually even increase in some dataset size ranges.212

Conclusions. These results suggest that a decrease in Euclidean distance of the parameters with213

dataset size is likely not a viable path through which to prove stability in practical deep learning214

settings.215
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(a) m = 15, 000.

(b) m = 50, 000.

Figure 4: Interpolation at t = 100, 000.

One might ask whether the nondecreasing Euclidean distance we observe here is caused by the norms216

in parameter space themselves growing with dataset size. We first emphasize that this question does217

not impact our conclusions, as the proofs to which we have referred invoke the raw Euclidean distance218

between the parameters. However, for completeness, we refer the interested reader to Appendix C for219

an extensive analysis of norms and normalized Euclidean distances.220

4.2 Linear Mode Connectivity221

We now ask the question: Is nonconvexity causing optimization on S and S0 to diverge to different222

basins of attraction, thus thwarting efforts to extend analyses from convex settings to deep learning’s223

nonconvex setting (as is done by [11] and follow-up works)? Here, we use basin of attraction to224

mean a convex set of solutions (in parameter space) all with comparable training and/or test loss.225

To make this more precise, we invoke the linear mode connectivity framework of Frankle et al. [10]226

to study this question. Specifically, linear mode connectivity asks whether, at all networks along the227

linear path between two candidate networks (in parameter space), the training and/or test error does228

not increase. In our setting, WS and WS0 qualify as linearly connected modes if, for all ↵ 2 [0, 1],229
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the (test or train) accuracy of the model with parameters ↵WS + (1 � ↵)WS0 is not significantly230

below that of WS or WS0 (roughly 2%, per [10]).231

Results. We plot the train accuracy (on S) and test accuracy at ↵WS + (1� ↵)WS0 at 76 equally-232

spaced values of ↵ 2 [�1, 2]. The learned parameters are at ↵ = 0 and ↵ = 1, but we include233

additional values of ↵ on either end as a frame of reference. We randomly select 10 trials among234

the 40 trials described in Section 2 and, for each trial, we plot the train and test accuracy for each235

value of ↵. Figure 4a has results for m = 15, 000 and Figure 4b has results for m = 50, 000.236

The ResNet-20 on SVHN has nondecreasing accuracy when linearly interpolating between WS237

and WS0 , the ResNet-20 on CIFAR-10 without momentum has slightly decreasing accuracy when238

linearly interpolating between WS and WS0 , and the ResNet-20 on CIFAR-10 with momentum has239

significantly decreasing accuracy when interpolating.240

Conclusions. A priori, it is not obvious what one should expect when linearly interpolating, and it241

is thus perhaps surprising that our three configurations largely span the space of possibilities. Thus,242

in order to further study the weaknesses of uniform stability in practical deep learning settings, we243

suggest that moving to a regime such as a ResNet-20 on CIFAR-10 with momentum, in which the244

solutions are not connected by a path of nondecreasing accuracy, might not be immediately necessary245

from a scientific standpoint. Perhaps the limitations of uniform stability can be explored and better246

understood with a configuration such as our ResNet-20 on SVHN (without momentum). Notably, the247

SVHN interpolation results suggest that nonconvexity might not be necessary at all to investigate the248

particular weaknesses of algorithmic stability experienced by deep learning; rather, convex settings249

with large enough basins of attraction (defined for our purposes as convex sets of parameters yielding250

approximately equal training and/or test loss) to host a reasonable degree of functional diversity251

might actually be subject to these same weaknesses. Thus, our findings might open the door to the252

study of more tractable, convex settings in which one can study the same limitations of algorithmic253

stability that appear in deep learning.254

5 Conclusions and Future Work255

In this work, we have initiated the challenging endeavor of empirically studying the uniform stability256

of deep learning. Although we freely admit that no reasonable empirical results could definitively257

rule out uniform stability (due to its formulation as several maxima over the domain), we believe that258

our results present compelling evidence that (a) uniform stability (with respect to the cross-entropy259

loss) might not be present in practical deep learning with sufficient strength to explain generalization,260

and (b) that typical theoretical approaches based on parameter distance decreasing with dataset size261

are likely not the driving force behind any form of algorithmic stability that nevertheless might exist262

in deep learning. Ultimately, if some form of algorithmic stability (perhaps weaker than uniform263

stability) is at play in deep learning, we suspect that it will stem from a function-space view that264

appropriately handles divergence to different basins of attraction after swapping one data point (as265

seen in Section 4.2, Configuration 2b). However, in the meantime, we present compelling evidence266

that many of the weaknesses of uniform stability can already be seen empirically in simpler, perhaps267

even convex, settings. We believe that formalizing and further investigating these more tractable268

settings presents an exciting direction for future work.269
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Broader Impact270

Overall, we believe that this work has relatively minimal societal impact. Ultimately, in the long term,271

we do hope that this work will contribute to our collective understanding of how deep learning works,272

which is increasingly critical as deep learning is deployed in an ever-growing range of real-world273

applications. We see this as a potential positive benefit of our work. On the negative side, we do274

not envision any major harm from this work, other than the environmental cost of running these275

experiments. However, our hope is that, as we gain a better understanding of deep learning as a276

society, the need for so many large-scale scientific experiments will eventually subside, and we will277

be better equipped to predict the behavior of deep learning through theory (at least more than we are278

able to do at present).279
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A Further Methodology Details336

Dataset splits. MNIST: From the 60,000 training examples, we randomly sampled subsets as337

specified in Section 2 for training. We used the full 10,000-element test set for evaluation (including338

computation of uniform stability, as specified in Section 2).339

CIFAR-10: From the 50,000 training examples, we randomly sampled subsets as specified in Section340

2 for training. We used the full 10,000-element test set for evaluation (including computation of341

uniform stability, as specified in Section 2).342

SVHN: From the 73,257 training examples, we randomly sampled subsets as specified in Section343

2 for training. To maintain consistency with MNIST and CIFAR-10, we randomly sampled 10,000344

elements from the 26,032-element test set for evaluation. All datasets were normalized in the same345

manner, by dividing each coordinate by 255.346

Selection of hyperparameters. The hyperparameters for ResNet-20 on CIFAR-10 are derived347

from [12]. The hyperparameters for logistic regression were chosen similarly, intentionally without348

momentum (since our primary goal was to study SGD) and without a decaying learning rate. The349

hyperparameters for Configuration 1a were intentionally chosen to vary from Configurations 2a350

and 2b, in order to create more diversity in our hyperparameter settings; specifically, we deemed351

it valuable to investigate a smaller batch size (i.e., 32) without momentum, and the corresponding352

learning rate of 0.01 worked fairly well with this batch size.353

Stopping criterion details. We considered three different possible stopping criteria: parameter354

updates, epoch number, and average training loss. We performed preliminary analyses with all355

stopping criteria, but after careful consideration, we ultimately chose to focus our analysis on356

parameter updates for the following reasons: (1) parameter updates align with theoretical analyses of357

uniform stability, such as [11, 8], in which the stability parameter is expressed as a function of the358

number of parameter updates; and (2) parameter updates appear to give uniform stability the best359

chance at succeeding in explaining generalization, thus making our negative results more significant.360

Specifically, if instead we were to hold the number of epochs fixed across dataset sizes, this means361

that larger datasets would take more steps. This is true for average training loss as a stopping criterion362

as well, as it typically takes more steps for larger datasets to reach the same average training loss as363

smaller datasets. Thus, although these stopping criteria are perhaps truer to practice, we believe that364

they make it even easier for uniform stability to fail to explain the strength of generalization.365

Dataset size range. We chose to limit our analysis to the ranges specified in Section 2 for the fol-366

lowing reason. In order to ask the question Can the strength of decrease with m in our generalization367

gap be explained by uniform stability?, we wanted a rate of decrease with m that would be roughly368

constant in our dataset size range. Figure 5 shows a plot and curve fit on a normal-scale plot, followed369

by a log-log plot. Although the curve fit displays some room for improvement in the original plot,370

the log-log plot reveals different regions of decrease with m. Through this plot and additional such371

investigations, we noticed that the dataset size range 15,000-50,000 yielded the largest window with372

a roughly consistent rate of decrease with m. Thus, we chose to focus our analysis on this window373

in order to draw more meaningful conclusions. As deep learning models are typically trained in374

large-data regimes, this decision aligns with practical considerations as well.375

Curve fitting details. We used scipy’s optimize package, specifically the curve_fit function.376

We fit parameters a and b in y = amb, where m is the dataset size and y is the metric of interest.377
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Figure 5: Configuration 1a, with 20 samples per dataset size m. Each sample involves independently
drawing S ⇠ D

m
train, z ⇠ Dtest, i ⇠ U([m]). S0 := Si z .

B Further Experiments for Section 3378

In this section, we present stability and generalization results for two additional seeds (Trials 2 and379

3) and compare them to the original seed presented in the main paper (Trial 1). Our figures are as380

follows:381

• Figure 6 has all trials for Configuration 1a (SVHN).382

• Figure 7 has all trials for Configuration 2a (CIFAR-10, no momentum).383

• Figure 8 has all trials for Configuration 2b (CIFAR-10, 0.9 mometum).384

• Figure 9 has generalization (cross-entropy only) and stability results for Iteration 50,000 for385

Configuration 1a.386

• Figure 10 has generalization (cross-entropy only) and stability results for Iteration 50,000387

for Configuration 2a.388

• Figure 11 has generalization (cross-entropy only) and stability results for Iteration 50,000389

for Configuration 2b.390

• Figure 12 has generalization (cross-entropy only) and stability results for Iteration 150,000391

for Configuration 1a.392

• Figure 13 has generalization (cross-entropy only) and stability results for Iteration 150,000393

for Configuration 2a.394

• Figure 14 has generalization (cross-entropy only) and stability results for Iteration 150,000395

for Configuration 2b.396

The additional trials are roughly consistent with the trial highlighted in the main paper.397

C Further Experiments for Section 4398

In this section, we present further experiments regarding regarding the Euclidean distance between399

A(S) and A(S0), parameter norms, and normalized Euclidean distances. Our figures are as follows:400

• Figure 15 presents additional trials for kA(S)�A(S0)k2 at Iteration 100,000.401

• Figure 16 has kA(S)k2 at Iteration 100,000.402

• Figure 17 has normalized Euclidean distances, with further details in the caption.403
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Figure 6: All trials for Configuration 1a (SVHN).
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Figure 7: All trials for Configuration 2a (CIFAR-10, no momentum).
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Figure 8: All trials for Configuration 2b (CIFAR-10, 0.9 momentum).

Figure 9: Iteration 50,000 for Configuration 1a.
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Figure 10: Iteration 50,000 for Configuration 2a.

Figure 11: Iteration 50,000 for Configuration 2b.
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Figure 12: Iteration 150,000 for Configuration 1a.

Figure 13: Iteration 150,000 for Configuration 2a.
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Figure 14: Iteration 150,000 for Configuration 2b.

Figure 15: All trials for kA(S)�A(S0)k2 at t = 100, 000.
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Figure 16: kA(S)k2 at t = 100, 000.

Figure 17: Normalized Euclidean distance. For each Euclidean distance kA(S)�A(S0)k, we divide
by (kA(S)k + kA(S0)k)/2. The results suggest that normalizing largely mitigates the growth in
Euclidean distance with dataset size; however, this does not appear to yield a significant decrease in
Euclidean distance with dataset size.
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Figure 18: Additional interpolation trials: Configuration 1a (SVHN).

Figure 19: Additional interpolation trials: Configuration 2a (CIFAR-10, no momentum). Note: We
omit Configuration 2b from additional trials because the lack of connectivity seen in the body of the
paper is not our focus in these additional trials; rather, we are simply interested in confirming cases
of linear mode connectivity.
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